The Sturm–Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data
نویسندگان
چکیده
The Sturm–Liouville hierarchy of evolution equations was introduced in [Adv. Nonlinear Stud. 11 (2011), 555–591] and includes the Korteweg–de Vries and the Camassa– Holm hierarchies. We discuss some solutions of this hierarchy which are obtained as limits of algebro-geometric solutions. The initial data of our solutions are (generalized) reflectionless Sturm–Liouville potentials [Stoch. Dyn. 8 (2008), 413–449].
منابع مشابه
The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملThe Algebro-geometric Toda Hierarchy Initial Value Problem for Complex-valued Initial Data
We discuss the algebro-geometric initial value problem for the Toda hierarchy with complex-valued initial data and prove unique solvability globally in time for a set of initial (Dirichlet divisor) data of full measure. To this effect we develop a new algorithm for constructing stationary complex-valued algebro-geometric solutions of the Toda hierarchy, which is of independent interest as it so...
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملA Combined Sine-gordon and Modified Korteweg{de Vries Hierarchy and Its Algebro-geometric Solutions
We derive a zero-curvature formalism for a combined sine-Gordon (sG) and modi-ed Korteweg{de Vries (mKdV) equation which yields a local sGmKdV hierarchy. In complete analogy to other completely integrable hierarchies of soliton equations, such as the KdV, AKNS, and Toda hierarchies, the sGmKdV hierarchy is recursively constructed by means of a fundamental polynomial formalism involving a spectr...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کامل